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Abstract 

The coherent X-ray diffraction experiment may be used 
to determine an electron density matrix for a crystal. 
Equations are displayed whose purpose is to convert 
measured scattering intensities (or structure factors) 
into a density matrix corresponding to a single 
determinant of molecular orbitals. With H and H 2 as 
model systems it is shown that the equations may be 
solved and that the solutions are physically meaning- 
ful. The results are compared to those obtained by 
ordinary least-squares refinement. 

Introduction 

The structure factors derived from the coherent X-ray 
diffraction experiment are related to the electronic 
density distribution, p(r), of the unit cell in the following 
way: 

F ( k ) =  f p(r) e '1''' dr. (1) 

It is the intensities 

I(k) = F(k) F* (k) (2) 

that are observed in this experiment at discrete values 
of the scattering vector, k. It is assumed here that 
thermal effects and other experimental conditions 
which modify the ideal intensities can be accounted for 
independently of the form of the electron density. It is 
also assumed that the nuclear positions have been 
previously determined. To emphasize the quantum 
mechanical nature of the electron density and the 
closely related function p(r, r'), the one-body reduced 
density matrix, we write the following definitions: 

p(r, r') = N f ~ (r l, s l, x2... x~) ~*(r 1, Sl, X2...Xn) 

x dx2. . .dx n dSl (3a) 

p(r) = p(r, r), (36) 

where x t denotes both space coordinates r I and spin 
coordinates s I. The wave functions in (3a) depend 
parametrically upon nuclear coordinates. Hence 
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measured X-ray intensities and structure factors will be 
ensemble average properties (Clinton, Frishberg, 
Massa & Oldfield, 1981). The one-body reduced 
density matrix is obtained by integrating the square of 
the wave function over the coordinates of all particles 
but one, over the spin coordinate of the remaining 
particle, and multiplying the result by the number of 
electrons. Since ~ is antisymmetric with respect to the 
interchange of the coordinates of any pair of electrons, 
p(r, r') can be used to calculate the expectation value of 
any one-body property. The diagonal 'elements' of this 
matrix, p(r, r), measure the probability of finding an 
electron at position r. The requirements imposed by 
quantum mechanics upon the wave function will 
restrict the class of functions which are acceptable 
densities. Although the practice of taking p(r) to be a 
sum of spherical atomic densities has been very 
successful in determining crystal structures, it is well 
known (Coppens, 1975a,b) that X-ray diffraction data 
can be accurate enough to obtain features of the 
electron density which go beyond the isolated-atom 
approximation. Therefore, it is expected that (3) will 
become more important as more detailed information is 
sought from the data. That is to say that any density 
function should be related to an antisymmetric N-body 
wavefunction via (3). The complete set of necessary 
and sufficient conditions on the density is not presently 
agreed upon, but the conditions on p(r, r') are well 
known. All eigenvalues of the one-body reduced density 
matrix must be bounded by 0 and 1. 

fp(r, r') ~pl(r') dr' = e t ~pi(r) 

0_<e~_<l for alli. 

(4) 

It is clear from (3) that any density which is the 
diagonal part of an N-representable density matrix will 
be a valid density. 

Expansion of the density in atomic orbital products 
is a model used by several workers in this field 
(Stewart, 1969; Coppens, Willoughby & Csonka, 
1971; Matthews, Stucky & Coppens, 1972). It is 
flexible enough to describe accurately the density of a 
unit cell. Overlap products simulate bonding and 
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polarization orbitals can account for lone-pair elec- 
trons. If the weighting coefficients of the atomic-orbital 
products are to be interpreted as population coeffi- 
cients and compared to theoretical wavefunction 
calculations, it is imperative that the restrictions 
imposed by quantum mechanics, specifically equations 
(4), be adhered to. We have already proposed (Clinton 
& Massa, 1972; Clinton, Frishberg, Massa & Oldfield, 
1973, 1981) that these restrictions be accounted for by 
seeking an idempotent density matrix that most closely 
fits the X-ray diffraction data. Idempotency of p(r, r'), 
i.e. 

f p(r, r') p(r', r") dr' = p(r, r"), (5) 

ensures that it is N-representable by a single deter- 
minant of normalized and mutually orthogonalized 
molecular orbitals (Massa & Clinton, 1972). If one 
chooses the molecular orbitals such that the expec- 
tation value of the energy is minimized, the Hartree- 
Fock solution would result. However, here we do not 
use the energy as a criterion for determining the 
molecular orbitals but rather use data from the X-ray 
experiment. 

Inherent in the single-determinant approximation is 
the assumption that the electrons do not interact 
explicitly, but that the effect of interactions can be 
accounted for by averaging. It is expected that the error 
introduced by this assumption should not affect the 
ability of an idempotent density to interpret diffraction 
data which are accurate to about 1%. 

In this paper we present evidence that the algorithm 
proposed by Clinton et  al. (1981) is numerically viable 
,and leads to reasonable results. This is the first time a 
least-absolute-value constraint has been tested in the 
idempotent P equations. In the next section we give a 
brief review of the formalism and in the following 
section we report some numerical results of applying it 
to the one- and two-electron systems of the hydrogen 
atom and molecule. Although these systems are simple 
compared to those encountered by the experimentalist, 
they are still of value in providing numerical experi- 
ments with which to explore our method and with 
which to get an initial assessment of the importance of 
N-representability. Such numerical experiments are 
also valuable in allowing one to control precisely the 
magnitude of the effects due to temperature and to the 
scale factor. Our method for imposing N-represent- 
ability on the density in the context of structure factor 
constraints is untried, and so it is natural to begin by 
applying it to systems that are as simple as possible but 
have the main features of more complicated systems so 
that future generalization is possible. 

The results presented here clearly show that our 
method can be used to determine the elements of the 
density matrix. The imposition of quantum mechanical 
requirements allows us to fix the off-diagonal 'ele- 
ments', i.e. p(r, r'), from density-dependent data alone. 

It is also shown that an ordinary least-squares fit does 
not allow this to be done, and that completely ignoring 
N-representability constraints may result in non-phy- 
sical electron densities. Fixing the density matrix 
enables us to compare our experimental results with 
those obtained by strictly theoretical investigations. We 
expect the comparison with theory to become more and 
more important as experimental accuracy increases 
and as crystallographers seek the maximum amount of 
information from their efforts. 

Formal i sm 

In an atomic orbital basis, the density matrix p(r, r ')  is 
represented by a matrix P according to 

p(r, r ') = tr P~(r) ~+(r ') ,  (6) 

where W is a column matrix of the basis vectors. 
Condition (5) translates into the matrix equation for P: 

PSP= P, (7) 

where S is the overlap matrix of the basis. In addition to 
being idempotent, the density matrix must be Hermitian 
and normalized to the number of molecular orbitals N: 

P+=P (8) 

tr PS = N. (9) 

To determine the elements of P, the following least- 
absolute-value constraint is imposed: 

Z Wk Itr P O ( k ) -  (O(k))l = e. (10) 
k 

The scaler e is made as small as possible to ensure the 
best fit to a set of data. The data points (O(k)), which 
are weighted by Wk, are expectation values of operators 
having matrix representatives O(k). If X-ray structure 
factors are used as data points, the operator matrices 
will be the Fourier transforms of all basis orbital 
products, evaluated at the various values of the 
scattering vector k: 

Ou(k) = f ~Ui(r) ~*  (r) e ikrdr- -  ft~(k). (11) 

This matrix need not be Hermitian. However, if 
intensities are used as data points, the operator 
matrices are taken to be 

Ou(k ) ---- fo(k)tr Pf+(k) + fh(k)tr Pf(k) (12) 

which are of necessity Hermitian. In this case the 
operator is a function of the current P matrix and must 
be updated on every iteration; at solution it will not 
change. The motivation for choosing (10), rather than 
the more conventional least-squares functional, is that 
it leads to a linear equation for the Lagrangian 
multipliers whereas the latter does not. 
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Idempotency is achieved by reducing tr(PSP - p ) 2  

to zero and using the Lagrangian multiplier technique 
to enforce (9) and (10). (Hermiticity will be preserved 
throughout the iterations as long as the initial guess is 
Hermitian.) We arrive at the following iterative 
equation for P: 

Pn+l = Pn + 21 S + 22 G (13) 

with 

P,, = P. SP,, + p2 S + SP~-  P,, SP~ S -  SP~ SP,, (14) 

and 

G :  ~ Wk O(k+)--  XWk_ O(k_). (15) 
k÷ k 

A data point is in the k+ group if [tr PO (k) - (O(k))] 
>_ 0, otherwise it is in the k group. Alternatively, one 
can define 

R = S 1/2 PS 1/2 (16) 

and thus the iterative equation for R becomes 

R,+ 1= 3R 2 -  2R~ + 21 1 + 22 S -1/2 GS -1/2. (17) 

The Lagrangian multipliers are determined on every 
iteration by 

( ) = (  S S ) ( t r  1 21 tr SG -1 

22 tr GS tr GG] 

) x \ e + Z ( O ( k + ) ) _ ~ ( O ( k ) ) _ t r P G  " (18) 

relatively few parameters and many observable reflec- 
tions. The number of parameters that must be 
determined in a normalized, symmetric matrix of 
dimension m is (m 2 + m - 2)/2. But, in an idempotent 
matrix, all these elements are not independent and the 
number of free parameters is greatly reduced. In fact, 
the increase in parameters is linearly dependent on the 
basis size and not quadratically as in most other 
formalisms used in this type of analysis. The number of 
independent parameters in an idempotent matrix is 
(Nm - N 2) where N is the number of molecular 
orbitals (one-half the number of electrons for a 
closed-shell system). When these many constraints are 
imposed, the elements of P should be uniquely 
determined. However, we are using only one con- 
straint, (10), regardless of the size of the basis. With 
ordinary constraints, an underconstrained problem will 
have an infinite number of solutions. But a least- 
absolute-value constraint, such as (10), forces the P 
matrix to fit at many points in reciprocal space and is a 
much stronger requirement than one ordinary con- 
straint. 

In the next section we report some simple numerical 
results which illustrate the general convergence proper- 
ties of the proposed algorithm. These examples deal 
with the questions of initial guess dependence, resulting 
from the under-constrained nature of the problem as 
discussed above, and multiple solutions resulting from 
the essentially quadratic nature of the basic equations. 
We present unrestricted least-squares solutions for 
comparison when possible, and point out some advan- 
tages of imposing N-representability. 

When an idempotent P is found which satisfies (10), e is 
decremented and the process repeated until the smallest 
value of e consistent with an idempotent P is found. 

The application of this formalism is simple and 
straightforward. First, it requires the selection of an 
appropriate basis for the symmetry of the unit cell. 
Guidelines for such a choice have been extensively 
studied within the context of variational calculations of 
quantum chemistry, and the results should be gen- 
erally valid for this type of analysis also. Then the 
Fourier transforms of all orbital products must be 
evaluated; this is facilitated by the use of Gaussian 
functions since there will ordinarily be many two-center 
integrals. Finally, iteration with (13) or (17) involves 
matrix multiplications and additions, and the inversion 
of the simple 2 x 2 dimensional matrix in (18). 

We realize that one of the major obstacles which has 
discouraged the use of atomic basis orbitals in the 
refinement of X-ray data is the large number of 
parameters that must be determined. Since the number 
of data points available is limited by the diffraction 
experiment, the crystals amenable to this type of 
treatment are those with unit cells characterized by 

Numerical examples 

A. Hydrogen atom. The data used here are the real 
structure factors given by Stewart, Davidson & 
Simpson (1965) for a spherical hydrogen atom in a 
hydrogen molecule. They used eleven spherical STO's 
to fit the density of the essentially exact Kolos- 
Roothaan H 2 wavefunction. Forty-five pieces of data 
are included in the set and range from sin 0/2 = 0.0215 
to 1.7176 A -1. The basis set we employ consists of 
s-type hydrogenic functions with a variable exponent (. 
We point out that the exact solution for this system is 
idempotent since there is only one electron. 

Table 1 illustrates that initial guess dependence does 
not appear to be a problem here. Four basis functions 
are used (with ¢-- 1.00 and all weighting factors unity) 
so that the number of free parameters in P is 3. Four 
very different initial guesses lead to the identical result 
when employing the structure-factor algorithm. 

In Table 2 and Fig. 1 we give the results of using the 
Is, 2s and 3s functions to fit the hydrogen-atom 
structure factors by varying ¢ from 0.9 to 7.0. 
Conventional least-squares analyses in which the only 
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imposed constraint  is normal izat ion were carried out 
for comparison.  The agreement factors, 

R = 3 Z I IFobs I -- IFca,clt/ ~ IFobs I, (19) 
all all 

reflections reflections 

a re  listed in addition to the lower half  of the P matrices 
and their eigenvalues. Sensible idempotent  solutions are 
found for all systems in which a reasonable  basis (0.9 
< ff _< 2.0) is used, indicating the results are not overly 
sensitive to the basis set. We should emphasize that  
al though in every case the greater flexibility of the 
not- idempotent  density matrix allows it to fit the data  
more closely, never is this density matrix N-repre- 
sentable. Even an extraordinari ly accurate fit to the 
density does not force the density matrix to become 
quan tum mechanical ly  acceptable. For  ~ = 5 .00 the 

agreement index is very small, R = 0 .0009,  but the 
eigenvalues range from - 0 . 8 9 7 6  to 1.7974, whereas 
the only acceptable values are 1.0 and 0.0.  Al though 
the density is quite good, the elements of the density 
matrix have no meaning as populat ion coefficients. 
Throughout  the set of not- idempotent  matrices in Table 
2 this problem manifests itself as negative diagonal  
elements which theoretically should be squares of real 
numbers  and as elements larger than 1.0 which violate 
the necessity of having a normalized wave function. 

The best idempotent  fit was found at ~ = 1-12 with 
the contr ibut ion of the ls  orbital predominat ing.  This 
result is in accord with the notion that  the hydrogen 
' a tom'  in a H 2 molecule should be similar to the free 
atom (~ = 1.00) but somewhat  more contracted.  In 
contrast ,  the best non-idempotent  fit is at ~ = 5.00, 
which again indicates that  physical  interpretat ion of 
this result would be misleading. 

Table 1. Study of initial guess dependence for the hydrogen atom 

The matrix P defines the density matrix, through p = trP~(r)w+(r). The row matrix of basis functions is W+ = Is, 2s, 3s, 4s. 

P P,, P2, P3, P41 P22 P32 P42 P33 P43 P44 
Initial guess 1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Initial guess 2 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 
Initial guess 3 0.5000 0.5000 0.0000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 
Initial guess 4 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.00 
Solution 0.7688 -0.3670 -0.1791 -0.1048 0.1752 0.0855 0.0500 0.0417 0.0244 0.0143 

Table 2. Comparison of idempotent and not-idempotent matrices for the hydrogen atom 

Pidempotent 

0.9483 
0.90 0.1983 0.0415 

0.0985 0.0206 
R = 0.118 

0.9460 
1.00 0.2088 0.0460 

0.0872 0.0192 
R = 0.049 

The row matrix of basis functions is ~+ = Is 2s 3s. 

0.0102 

0.0080 

Eigenvalues Pnot idempotent Eigenvalues 

1.0000 3.1923 (0.31) 57.940 
0.0000 -28.3055 (3.7) -2.0229 (0.27) -2.192 
0.0000 48.6904 (6.2) -0.7343 (0.15) -0.1694 (0.05) -54.748 

R = 0.027 

1.0000 1.9893 (0-11) 26.8444 
0.0000 -12-9117 (1.3) --0.9163 (0.10) -0.9837 
0.0000 22-3742 (2.2) --0.3214 (0.06) 0.0730 (0.02) -24-8607 

R "-- 0.010 

1.12 

1.20 

0.9936 
--0.0395 0.0016 
--0.0692 0.0028 

R = 0.006 

0.9977 
--0.0333 0.0011 
--0.0345 0.0012 

R = 0.015 

0.0048 

0.0012 

1.0000 1.0448 (0.04) 2.1293 
0.0000 --0.7032 (0.44) --0.0445 (0.03) -0.0403 
0.0000 1.3489(0.74) --0.0065(0.02) -0.0002(0.007) -1.0890 

R = 0.004 

1.0000 0.6566 (0.08) 8.9821 
0.0000 --4.3608 (0.97) 0.3152 (0.07) 0.3457 
0.0000 -7.4685 (1.6) 0.1187 (0.04) 0.0282(0.01) -8.3277 

R = 0.009 

5-00 

7-00 

0.2267 
--0.4055 0.7254 

0.1042 -0.1864 
R = 0.028 

0.0000 
--0.0055 0.8208 

0-0026 --0-3835 
R = 0.085 

0.0479 

0-1791 

1.0000 0.1340 (0.005) 1. 7974 
0.0000 -0.9715 (0.06) 0.6351 (0.004) 0.1002 
0.0000 0.8811 (0.09) -0.2250 (0.002) 0.0510 (0.0007) -0.8976 

R = 0.0009 

1.0000 -0.1522 (0.06) 6.4519 
0.0000 3-0254 (0.78) 0.8543 (0.06) 0.5476 
0.0000 -5.4171 (1.3) -0.2024 (0.03) 0.2979 (0.008) -5-9995 

R = 0.009 
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Although we have stressed the point that X-ray 
scattering data alone cannot be used to determine the 
density matrix without the appropriate quantum- 
mechanical restrictions, a lack of N-representability can 
also have dramatic effects upon the density. This is 
illustrated in Fig. 2 where the best least-squares fit leads 
to a density which is strongly negative at and near the 
nucleus. The basis set in this case is somewhat 
inappropriate for the problem ~ = 7.00, but the 
agreement factor R = 0.009 indicates a fairly good 
overall fit. Of course, a plot of the electron density of an 
idempotent matrix using such an inappropriate basis 
would also look bizarre (although not negative). The 
point of presenting Fig. 2, however, is to illustrate that 
a good fit to the experimental data as measured by R is 
not in itself sufficient to ensure a density that is 
adequate in all respects. We have found regions of 
negative density to be common for least-squares fits to 
this hydrogen-atom data even when better bases are 
used, although these regions will usually be in areas 
where the density becomes only slightly but signifi- 
cantly negative. 

B. Hydrogen molecule. To test the convergence and 
properties of our algorithm for a two-center system, we 
constructed an arbitrary normalized idempotent den- 
sity containing two electrons and two nuclear centers at 

0, t 
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Fig. 1. Comparison of electron densities for the idempotent and 
not-idempotent matrices reported in Table 2 for the hydrogen 
atom. Exact density; • not-idempotent density; O 
idempotent density. 

a distance of 1.23 atomic units. This density is defined 
by six basis functions which are Gaussian sums and 
have the symmetry of a ground-state H 2 molecule. 
Since the operator matrices of (11) are complex for this 
system, intensity data were used. No initial guess 
dependence is found when the exact basis is used. The 
number of free parameters here is two. Four initial 
guesses converged to the exact solution although one 
initial guess failed to converge. Altering the basis so 
that the density could not be reproduced exactly (we 
multiplied all exponents by 1.05 in one case and 0.95 
in another case)provided encouraging results. The 
exact density was reproduced very closely in all cases 
and only one initial guess did not lead to a solution 
identical to the others found in that basis. The bases 

.2- 

-.2- 

-.4- 

'exact' SDS 

~ NI 

- .6-  

- .8-  

.~ ¢.o 1'.s £o 
Fig. 2. Not-idempotent electron density for the scale factor p = 7.0. 
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Fig. 3. Typical solution of P equations fit to H 2 molecular density 
of Stewart, Davidson & Simpson (1965). The basis contains two 
ls functions with E = 1.1 and 5.0, and one 2s function with ~ = 
1- I. The agreement factor is R = 0.0225. 
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used in another case were the original functions with 
exponents multiplied by 0.85 and 1.5. They result in 
agreement factors of 0.0046 and 0.0048, respectively, 
again confirming that the application of this algorithm 
is not highly dependent upon having a good basis. 
These results indicate there is a possibility that the 
solution will depend upon the initial guess matrix, but 
there is not an infinity of solutions as would be expected 
in a typical underconstrained problem. To eliminate 
any possible arbitrariness, we suggest using a free 
variational calculation, either Hartree-Fock or some 
approximation to Hartree-Fock as an initial guess. 
This idea is an extension of the work of Henderson & 
Zimmerman (1976) which indicated the existence of 
continuous, noncrossing, idempotent, energy-property 
hypersurfaces. This means that if one starts with an 
idempotent matrix of lowest possible energy and 
changes its fit to X-ray scattering data in a slow 
quasi-continuous way, the result will be closest to the 
original matrix. To investigate a problem for which the 
exact solution is not idempotent, the spherical atomic 
scattering factors for hydrogen calculated by Stewart et 
al. (1965) were used to construct a set of molecular 
scattering factors at an interatomic distance of 0.81 × 
1.4009 atomic units. Scattering factors for nineteen 
values of sin 0/2 from 0.0215 to 0.6011 ./k -~ were used 
in four planes whose angles with the internuclear bond 
were 0, 20, 50 and 90 °, to make a total of seventy-six 
scattering factors. Huzinaga's (1965) Gaussian expan- 
sions of STO's with variable exponential factors were 
used to expand the density matrix. In accord with 
previous results, good fits to the density were found to 
be not very sensitive to the details of the basis 

functions. Limited experimentation with three atomic 
basis functions generally refined to R = 0-023 
regardless of exponents or type (Is, 2s, 3s). Presented 
in Fig. 3 is a typical result. 

We thank Barbara Rubensohn for constructing Fig. 
1, and Eric Unhjem and Toni Pezone for constructing 
Figs. 2 and 3, and CUNY-FRAP for grant support. 
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Abstract 

Expressions for the estimation of the I Gnl values, the 
I gxl  values of the squared structure, on the basis of all 
quartets in which H is a cross-term vector are presented 
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for the space groups P1 and P1. A reliable estimation 
procedure was developed employing the quartets with 
highest quartet product only. It appears that in this way 
I EI values of strong or weak reflections outside the 
limiting sphere could be predicted. An implication of 
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